Inactivation of Viruses by Combination Processes of UV and Chlorine
نویسندگان
چکیده
Adenoviruses, the most UV resistant microorganism currently known, are posing concerns in UV treated drinking water. To reduce the risk from adenovirus infection, combination processes of UV and chlorination are attractive. Bacteriophage MS2 and adenovirus 5 (AdV5) were used in this study, and inactivated by low-pressure UV (LPUV) lamp, chlorination, sequential processes (UV-Cl2 and Cl2-UV) and a simultaneous process (UV/Cl2). MS2 was more resistant against chlorine than AdV5, and CT values for 2 log reduction of MS2 and AdV5 were 0.77 and 0.033 mg-min/L, respectively. However, AdV5 was more resistant to UV than MS2 and required a 101 mJ/cm of fluence for 2 log reduction. Compared to the application of UV or chlorine separately, an increasing trend of MS2 inactivation rate was found in the sequential processes, which was statistically significant (p < 0.05, ANCOVA). The simultaneous process of UV/Cl2 for MS2 provided about 2.3 times higher inactivation rate than a summation of inactivation rates by the separate application of either chlorine or UV, even at the same UV fluence rate and the same initial chlorine concentration. The combination processes of UV and chlorine, either sequential or simultaneous application, seemed to be more effective than a standalone process in viral inactivation.
منابع مشابه
Induction of Nucleic Acid Damage in Viral Genomes using Riboflavin in Combination with UV Light
Background and Aims: Despite the screening of blood donors, blood transfusion represents an ideal port of entry for blood-borne infection. Blood-borne pathogen transmission has been a concern since the earliest days of transfusion. The blood product of platelet (PLT) concentrates is still faced with the risk of bacterial and viral contaminations. Pathogen inactivation technologies offer a proac...
متن کاملInduction of Nucleic Acid Damage in Viral Genomes Using Riboflavin in Combination with UV Light
Background and Aims: Despite the screening of blood donors, blood transfusion represents an ideal port of entry for blood-borne infection. Blood-borne pathogen transmission has been a concern since the earliest days of transfusion. The blood product of platelet (PLT) concentrates is still faced with the risk of bacterial and viral contaminations. Pathogen inactivation technologies offer a proac...
متن کاملThe Effect of UV and Combined Chlorine/UV Treatment on Coliphages in Drinking Water Disinfection
Ultraviolet (UV) irradiation is a common way to disinfect drinking water, but some viruses are very resistant to UV. Drinking water was disinfected with UV after spiking with MS2 and 18 different coliphages isolated from municipal wastewater effluent. In addition, some coliphages were disinfected with combined treatment of chlorine/UV or vice versa with UV/chlorine. A UV-dose of 22 mWs/cm2 caus...
متن کاملInactivation of internalized and surface contaminated enteric viruses in green onions.
With increasing outbreaks of gastroenteritis associated with produce, it is important to assess interventions to reduce the risk of illness. UV, ozone and high pressure are non-thermal processing technologies that have potential to inactivate human pathogens on produce and allow the retention of fresh-like organoleptic properties. The objective of this study was to determine if UV, ozone, and h...
متن کاملThe Effect of Methylene Blue in Combination with Red Visible Light on Model Viruses Inactivation and Coagulation Factors in Fresh Frozen Plasma
Background and Aims: Fresh Frozen Plasma (FFP) is one of blood components. The risk of transmission of viruses from blood components regardless selection of blood donors and screening donated blood still remains. There are several methods for viral inactivation. In this study methylene blue (MB) photo inactivation process was used for inactivating viruses. Materials and Methods: In this study M...
متن کامل